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Linear instability of the electroforming process
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Abstract. In a mathematical model for the electroforming process a linear stability analysis shows that the
metal/electrolyte interface is unstable under small perturbations. Thus the model is ill-posed, so a different
dynamic condition on the free boundary is suggested which allows nonuniformities to form but eliminates infinite
front velocities, thus reflecting better the actual process.

1. Introduction

In electroforming a metal layer is electrodeposited upon the cathode, or mandrel, of an
electrolytic cell. A major industrial problem associated with the general electroforming
process is the production of a uniform thickness of metal when the mandrel has a general
(irregular) shape. The formation of a nonuniform thickness is often a source of mechanical
weakness with many electroformed components. In practice this difficulty is sometimes
overcome by the periodic reversal of the electrode polarity. The electrodeposition takes place
over a period of time that is followed by a period of dissolution, controlled such that a
uniform thickness for the electroformed component is obtained.

A mathematical model for this process was considered in [1] where some of its properties
are discussed and results of some numerical solutions are presented. Following industrial
practice the model was considered not only for electrodeposition but also for dissolution.

The purpose of this present note is to perform a Mullins-Sekerka type of linear stability
analysis (see e.g. [2]) on a generalized version of the model [1] and to show that the
electroforming model has an unstable interface. This means that small perturbations that
appear on the forming surface (the free surface) grow exponentially with time. Moreover as
the wavelength of the perturbation becomes smaller the growth-rate becomes quicker.
Therefore in the absence of any stabilizing mechanism in the model, the velocity of the free
boundary becomes infinite and so the model breaks down. On the other hand, it follows from
the stability analysis that the model for the dissolution process has a linearly stable interface,
and small perturbations decay exponentially. But this is exactly the model for the electro-
chemical machining process that is known to be stable (see e.g. [3]). These two results
concerning the mathematical models seem to correspond to the events actually observed in
the industrial process. A similar behaviour can be found in the Hele-Shaw problem (see e.g.
[3]) both experimentally and in the mathematical model. The filling of the cell with a viscous
fluid is stable while the sucking of the fluid is unstable. In the model the free boundary
develops a cusp and so the velocity becomes infinite. In practice "fingers" can be seen to
form.
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The generalization of the model in [I] consists of the replacement of the standard dynamic
condition by a more general one that can take into account current cut-offs. In the former
the velocity of the free boundary (i.e. the rate of growth of the interface) is taken to be
proportional to the normal derivative of the electric potential (the current) on the free
boundary. Our generalization is in taking the velocity to be a nonlinear function of the
current provided that the current is above some threshold level, otherwise the interface
remains stationary. Such a type of relationship between the growth rate and the current was
proposed in [4] in a model for the electrodischarge machining process.

Finally we propose a different dynamic condition for the deposition rate that takes into
account the overpotentials that are likely to exist on the free boundary. This condition
prohibits infinite velocities and thus partially stabilizes the model but can still lead to the
formation of nonuniformities, so possibly giving a better correspondence between the model
and the physical process.

The generalized model is given in Section 2 and the linear stability analysis is performed
in Section 3.

2. The mathematical model

We consider a generalized model for the electroforming process. A region filled with
electrolyte has two electrodes on its boundary. One of the electrodes is connected to a source
of positive constant potential while the other, the mandrel, is connected to zero potential.
As a consequence of the flow of current through the electrolyte metal deposition takes place
on the mandrel. Thus the forming surface (the free boundary) moves into the region. We
neglect any chemical reactions in the electrolyte and the effect of any fluid flow. Also for
simplicity we consider just two-dimensional problems and use nondimensional variables.
We let = (x, y, t) be the electric potential in = {(x, y): -cc < x < co,
Y(x, t) < y < 1}, the region containing the solution at time t > 0. This geometry is taken
as in [1] for the sake of simplicity, see Fig. 1.

Charge conservation implies V2o = 0 in Q2, all t > 0. On the electrode F, = {(x, y):
- oo < x < oo, y = I}weapply ) = 1. NowletF = {(x,y): - oo < < x < ,y = Y(x,t)}
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Fig. 1. Electrode configuration. F, anode, F cathode (mandrel), fQ electrolyte.
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Fig. 2. The form off(s). a is the cut-off current.

be the free boundary at time t. Then on this boundary we have to specify two conditions.
The first is = 0, the second, sometimes called a dynamic condition, is usually taken as
outward normal velocity of , v = 4,,, where n is the unit vector to out of Q and
4 = 4/an is the normal derivative. Thus the rate of deposition (-v) is assumed to be

proportional to the current density (). Instead we use a more general condition
v = -f(l ,l) where f = f(s) can be a fairly general function that satisfies the following
conditions: it is Lipschitz continuous in 0 < s < co, i.e. there is some constant K such that
If(sl) - f(s 2)l < Kjls - s21 for0 < s,s 2 < o;f(s) - coo ass - oo; thereexists acut-off
current a > 0 such thatf(s) = 0 for 0 < s < a;f(s) > O,f'(s) > 0, andf is continuously
differentiable for s > a, see Fig. 2.

Therefore the mathematical model for the process is

V2 = 0 in Q, (1)

= I on r,, (2)

= 0 on F, (3)

v = -f(I4 ) on F. (4)

Note that a model for the process of dissolution (electromachining) is obtained from (1)-(4)
by changing the sign in (4), i.e.

v = f(1nkl). (4')

3. Linear stability analysis

We perform a Mullins-Sekerka type linear stability analysis (see e.g. [2]) on the interface F
in the model (1)-(4). We assume that a small perturbation appears at some time, which we
take to be at t = 0, on a flat interface, taken as y = 1 - 1/A (at t = 0), and show that its
amplitude has an exponential growth rate. Then the unperturbed, hence independent of x,
absolute value of the normal derivative of 0 on F at t = 0 is A. If A < a then by (4) nothing
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happens (no deposition) provided the perturbation of - n,, is smaller than a - A. So let
A > a and let U = -f(A) be the unperturbed front velocity (Uis the outward velocity, i.e.
in the opposite direction to growth and hence negative). Let

Y(x, t) = 1 - /A - Ut + a(t) sin kx + .... (5)

the perturbation being small initially, 1 and 0 < a(O) = 0(1), k > 0 is the wave
number (27r x the reciprocal of the wavelength) of the perturbation. The perturbed poten-
tial, that has to satisfy (1), is

= A(y - 1 + 1/A + Ut) + b(t) exp (-k(y - 1 + 1/A + Ut)) sin kx + ....

(6)

(We actually replace the earlier region Q with Y < y < oo and require that the perturbation
decays to 0 as y -* co, or equivalently keep condition (2) but suppose that k > I which gives
(6) on neglecting exponentially small terms.)

In order to satisfy (3) on y = Y we have from (5) and (6) that

A( - /A - Ut + ea sin kx + - + /A + Ut) + b sin kx + . = 0,

hence to order 

b(t) = -Aa(t).

Now we want (4) to be satisfied. First note that

(8)v = -aY/at + O(e2) = U - eh sin kx + ...

where ti = da/dt. Next notice that a/an = - a/ay + eaY/ax a/ax + . . ., hence

i, = -A + ebk exp (-k(y- 1 + 1/A + Ut)) sin kx + ... (9)

where y = Y and so exp (-K(y - I + 1/A + Ut)) = 1 + 0(e). Inserting (8) and (9)
into (4) gives, to order e,

U - ei sin kx - -f(A - bk sin kx),

so

- U + a sin kx - f(A) - f'(A) 8bk sin kx,

but U = -f(A), hence i - - kbf'(A), and from (7) it follows that

a(t) - Akf'(A) a(t).

(7)

(10)
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Fig. 3. Growing fingers for the special case A = a.

Now f'(A) > 0 by our assumptions, hence we obtain from (10)

a(t) B exp (ct) (11)

for appropriate B > 0 and c > 0. Thus the amplitude of the perturbation grows faster for
larger wave number k (smaller wavelength). It may be conjectured (see e.g. [5]) that almost
immediately a cusp forms in the free boundary and the velocity there is infinite.

The special case of A = a is rather more complex. In this case the periodic perturbation
of the only just stationary free boundary is no longer sinusoidal but instead consists of
straight stationary parts and exponentially growing fingers (see Fig. 3).

On the other hand in the model for dissolution (4) is replaced by (4'), i.e. v = f(I bnl ), and
repeating the calculations above now gives

a -- Akf'(A) a (12)

instead of (10), and since the right-hand side in (12) is negative it leads to exponential decay
of the perturbation, i.e. linear stability. Clearly all these results apply to the special cases of
the usual models, i.e. a = 0 and f(s) = s so that (4) is v = , and (4') is v = - .

4. Conclusion

We have found that the generalized model for the electroforming process has a linearly
unstable free boundary. Thus mathematically the model is likely to be ill-posed as generally
solutions are unlikely to exist. This implies that numerical solutions to this model should also
fail to exist or, if a crude enough mesh is used, to misbehave as a refined mesh is introduced.
On the other hand in the real process, although nonuniformities do occur, the velocity of the
free boundary remains bounded. This suggests that the condition (3) in the model should be
replaced by an overpotential relation (see [6]) between the current and the potential:

qi = -g(4) (13)

where g(s) is a positive function for s > 0 and Lipschitz continuous with g(O) = 0 and
g'(s) > 0 for s > 0, see Fig. 4.

The stability now follows from the observation that since 0 < p < 1 ( = 1 on F 1) then
max (- v) = maxf(I A ) < f(g- (1)) and hence the velocity of the free boundary is bounded.
Note, however, that nonuniformities can still grow.
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Fig. 4. The overpotential g(s).

We also remark that mathematical models with such boundary conditions have been
considered in one space dimension for the heat equation, see e.g. [7] and references there.
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